Medical Biochemistry 5th Edition PDF Free Download
Research into the human genome and particularly gene regulation has been one of the main drivers of medical progress for some time now. A similar systemic approach has been applied to three other expanding fields: the study of the transcriptome, the proteome, and the metabolome (Fig. 1.1). From the biochemistry perspective, perhaps the most exciting development in the last few years has been the expansion of knowledge about proteins participating in the transfer of external metabolic signals to intracellular pathways and to and from the genome as well as the role of these networks in the regulation of cell division and growth (Fig. 1.2). This has also provided new insights into the pathogenesis of cancer and enabled new therapies for a range of diseases. All these developments have changed the way we look at metabolism. In addition to the strings of chemical reactions that have been the essence of biochemistry since its inception, we now recognize the sequences (cascades) of interacting signaling molecules that complement these reactions and are essential to their control. This poses new challenges for the student of biochemistry, who needs to face a novel and complex protein terminology. Familiarity with abbreviations and acronyms depicting signaling molecules and transcription factors is now necessary to gain a complete picture of metabolic pathways and their regulations. Another dimension of new knowledge is the growing understanding of links between metabolism and diseases that are related to nutrition, lifestyle, and environment. Obesity, diabetes, atherosclerosis, and cardiovascular disease, on the one hand, and malnutrition and nutritional deficiencies, on the other, are major global health concerns. Finally, the progress in neurochemistry is facilitating a better grasp of the science underpinning mental health problems. Biochemistry has fuzzy borders Biochemistry is not a discipline with clear borders. It links seamlessly to fields such as cell biology, anatomy, physiology, and pathology. In fact, it is not possible to understand or solve a clinical problem without crossing interdisciplinary borders. In this book, we cross these borders frequently, both in the text and in clinical boxes. The chapters covering nutrition, water and electrolytes, acid–base balance, and specialized tissues and their functions are fundamentally interdisciplinary and address several such crossover issues.